Background: Introduction.- The Bohr model of the atom.- Numerical values and the fine structure constant.- Atomic dimensions - is a reasonable atomic diameter? .- Localizing the electron: Is a point particle reasonable? .- The classical radius of the electron.- Atomic units.- Angular Momentum: Introduction.- Commutators.- Angular momentum raising and lowering operators.- Angular momentum commutation relations with vector operators.- Matrix elements of Vector operators.- Eigenfunctions of orbital angular momentum operators.- Spin.- Angular Momentum - Two Sources: Introduction.- Two sets of quantum numbers - uncoupled and coupled.- Vector model of angular momentum.- Examples of calculation of the Clebsch-Gordan coefficients.- Hyperfine splitting in the hydrogen atom.- The Quantum Mechanical Hydrogen Atom: The radial equation for a central potential.- Solution of the radial equation in spherical coordinates - the energy eigenvalues.- The accidental degeneracy of the hydrogen atom.- Solution of the hydrogen atom radial equation in spherical coordinates - the energy eigenfunctions.- The nature of the spherical eigenfunctions.- Separation of the Schrödinger equation in parabolic coordinates.- Solution of the separated equations in parabolic coordinates - the energy eigenvalues.- Solution of the separated equations in parabolic coordinates - the energy eigenfunctions.- The Classical Hydrogen Atom: Introduction.- The classical degeneracy.- Another constant of the motion - the Lenz vector.- The Lenz Vector and the Accidental Degeneracy: The Lenz vector in quantum mechanics.- Lenz vector ladder operators; conversion of a spherical eigenfunction into another spherical eigenfunction.- Application of the Lenz vector ladder operators to a general spherical eigenfunction.- A new set of angular momentum operators.- Energy eigenvalues.- Relations between the parabolic quantumnumbers.- Relationship between the spherical and parabolic eigenfunctions.- Additional symmetry considerations.- Breaking the Accidental Degeneracy: Introduction.- Relativistic correction for the electronic kinetic energy.- Spin-Orbit Correction.- The Darwin Term.- Evaluation of the terms that contribute to the fine-structure of hydrogen.- The total fine structure correction.- The Lamb shift.- Hyperfine structure.- The solution of the Dirac equation.- The Hydrogen Atom in External Fields: Introduction.- The Zeeman effect - the hydrogen atom in a constant magnetic field.- Weak electric field - the quantum mechanical Stark effect.- Weak electric field - the classical Stark effect.-The Helium Atom: Indistinguishable particles.- The total energy of the helium atom.- Evaluation of the ground state energy of the helium atom using perturbation theory.- The variational method.- Application of the variational principle to the ground state of helium.- Excited states of helium.- Doubly excited states of helium: autoionization.- Multielectron Atoms: Introduction.- Electron Configuration.- The designation of states - LS coupling.- The designation of states - jj coupling.- The Quantum Defect: Introduction.- Evaluation of the quantum defect.- Classical formulation of the quantum defect and the correspondence principle.- The connection between the quantum defect and the radial wave function.- Multielectron Atoms in External Fields: The Stark effect.- The Zeeman effect.- Interaction of Atoms with Radiation: Introduction.- Time dependence of the wave function.- Interaction of an atom with a sinusoidal electromagnetic field.- A two state system - the rotating wave approximation.- Stimulated absorption and stimulated emission.- Spontaneous emission.- Angular momentum selection rules.- Selection rules for hydrogen atoms.- Transitions in multi-electron atoms.-
Background: Introduction.- The Bohr model of the atom.- Numerical values and the fine structure constant.- Atomic dimensions - is a reasonable atomic diameter? .- Localizing the electron: Is a point particle reasonable? .- The classical radius of the electron.- Atomic units.- Angular Momentum: Introduction.- Commutators.- Angular momentum raising and lowering operators.- Angular momentum commutation relations with vector operators.- Matrix elements of Vector operators.- Eigenfunctions of orbital angular momentum operators.- Spin.- Angular Momentum - Two Sources: Introduction.- Two sets of quantum numbers - uncoupled and coupled.- Vector model of angular momentum.- Examples of calculation of the Clebsch-Gordan coefficients.- Hyperfine splitting in the hydrogen atom.- The Quantum Mechanical Hydrogen Atom: The radial equation for a central potential.- Solution of the radial equation in spherical coordinates - the energy eigenvalues.- The accidental degeneracy of the hydrogen atom.- Solution of the hydrogen atom radial equation in spherical coordinates - the energy eigenfunctions.- The nature of the spherical eigenfunctions.- Separation of the Schrödinger equation in parabolic coordinates.- Solution of the separated equations in parabolic coordinates - the energy eigenvalues.- Solution of the separated equations in parabolic coordinates - the energy eigenfunctions.- The Classical Hydrogen Atom: Introduction.- The classical degeneracy.- Another constant of the motion - the Lenz vector.- The Lenz Vector and the Accidental Degeneracy: The Lenz vector in quantum mechanics.- Lenz vector ladder operators; conversion of a spherical eigenfunction into another spherical eigenfunction.- Application of the Lenz vector ladder operators to a general spherical eigenfunction.- A new set of angular momentum operators.- Energy eigenvalues.- Relations between the parabolic quantumnumbers.- Relationship between the spherical and parabolic eigenfunctions.- Additional symmetry considerations.- Breaking the Accidental Degeneracy: Introduction.- Relativistic correction for the electronic kinetic energy.- Spin-Orbit Correction.- The Darwin Term.- Evaluation of the terms that contribute to the fine-structure of hydrogen.- The total fine structure correction.- The Lamb shift.- Hyperfine structure.- The solution of the Dirac equation.- The Hydrogen Atom in External Fields: Introduction.- The Zeeman effect - the hydrogen atom in a constant magnetic field.- Weak electric field - the quantum mechanical Stark effect.- Weak electric field - the classical Stark effect.-The Helium Atom: Indistinguishable particles.- The total energy of the helium atom.- Evaluation of the ground state energy of the helium atom using perturbation theory.- The variational method.- Application of the variational principle to the ground state of helium.- Excited states of helium.- Doubly excited states of helium: autoionization.- Multielectron Atoms: Introduction.- Electron Configuration.- The designation of states - LS coupling.- The designation of states - jj coupling.- The Quantum Defect: Introduction.- Evaluation of the quantum defect.- Classical formulation of the quantum defect and the correspondence principle.- The connection between the quantum defect and the radial wave function.- Multielectron Atoms in External Fields: The Stark effect.- The Zeeman effect.- Interaction of Atoms with Radiation: Introduction.- Time dependence of the wave function.- Interaction of an atom with a sinusoidal electromagnetic field.- A two state system - the rotating wave approximation.- Stimulated absorption and stimulated emission.- Spontaneous emission.- Angular momentum selection rules.- Selection rules for hydrogen atoms.- Transitions in multi-electron atoms.-
Nuclear Collisions and Structure: Descriptions of Heavy Ion Collisions at Intermediate Energies; E. Lehman. Boltzman Master Equation Theory of Nuclear Reactions; M. Cavinato, et al. Formation and...
This volume contains the proceedings of the third Euroconference on Atomic Phys ics at Accelerators (APAC 2001), with the title Stored Particles and Fundamental Physics. It was held in Aarhus,...
Discover your next great read at BookLoop, Australiand online bookstore offering a vast selection of titles across various genres and interests. Whether you're curious about what's trending or searching for graphic novels that captivate, thrilling crime and mystery fiction, or exhilarating action and adventure stories, our curated collections have something for every reader. Delve into imaginative fantasy worlds or explore the realms of science fiction that challenge the boundaries of reality. Fans of contemporary narratives will find compelling stories in our contemporary fiction section. Embark on epic journeys with our fantasy and science fiction titles,
Shop Trending Books and New Releases
Explore our new releases for the most recent additions in romance books, fantasy books, graphic novels, crime and mystery books, science fiction books as well as biographies, cookbooks, self help books, tarot cards, fortunetelling and much more. With titles covering current trends, booktok and bookstagram recommendations, and emerging authors, BookLoop remains your go-to local australian bookstore for buying books online across all book genres.
Shop Best Books By Collection
Stay updated with the literary world by browsing our trending books, featuring the latest bestsellers and critically acclaimed works. Explore titles from popular brands like Minecraft, Pokemon, Star Wars, Bluey, Lonely Planet, ABIA award winners, Peppa Pig, and our specialised collection of ADHD books. At BookLoop, we are committed to providing a diverse and enriching reading experience for all.
Sign In
your cart
Your cart is empty
Menu
Search
PRE-SALES
If you have any questions before making a purchase chat with our online operators to get more information.