Trending Bestseller

Spectroscopic Study on Charge-Spin-Orbital Coupled Phenomena in Mott-Transition Oxides

Masaki Uchida

No reviews yet Write a Review
Hardback
27 February 2013
$184.00
Ships in 5–7 business days
Hurry up! Current stock:

In this thesis the author presents the results of extensive spectroscopy experiments beyond the bounds of each transition element to clarify the origins of characteristic spectral features and charge dynamics in charge-spin-orbital coupled phenomena in Mott-transition oxides. Several counterpart 3d transition-metal oxides were adopted as model systems suitable for examining the mechanisms involved, and their electronic structures were systematically investigated using three main spectroscopy methods.

Comparative studies on the charge dynamics and Mott transition features of transition-metal oxides were performed: Charge dynamics and thermoelectricity in a typical Mott transition system La1−xSrxVO3, charge dynamics in a doped valence-bond solid system (Ti1−xVx)2O3 and in layered nickelates R2-xSrxNiO4 with charge-ordering instability are investigated thoroughly. The results obtained successfully provide a number of novel insights into the emergent phenomena near the Mott transition.

This product hasn't received any reviews yet. Be the first to review this product!

$184.00
Ships in 5–7 business days
Hurry up! Current stock:

Spectroscopic Study on Charge-Spin-Orbital Coupled Phenomena in Mott-Transition Oxides

$184.00

Description

In this thesis the author presents the results of extensive spectroscopy experiments beyond the bounds of each transition element to clarify the origins of characteristic spectral features and charge dynamics in charge-spin-orbital coupled phenomena in Mott-transition oxides. Several counterpart 3d transition-metal oxides were adopted as model systems suitable for examining the mechanisms involved, and their electronic structures were systematically investigated using three main spectroscopy methods.

Comparative studies on the charge dynamics and Mott transition features of transition-metal oxides were performed: Charge dynamics and thermoelectricity in a typical Mott transition system La1−xSrxVO3, charge dynamics in a doped valence-bond solid system (Ti1−xVx)2O3 and in layered nickelates R2-xSrxNiO4 with charge-ordering instability are investigated thoroughly. The results obtained successfully provide a number of novel insights into the emergent phenomena near the Mott transition.

Customers Also Viewed

Buy Books Online at BookLoop

Discover your next great read at BookLoop, Australiand online bookstore offering a vast selection of titles across various genres and interests. Whether you're curious about what's trending or searching for graphic novels that captivate, thrilling crime and mystery fiction, or exhilarating action and adventure stories, our curated collections have something for every reader. Delve into imaginative fantasy worlds or explore the realms of science fiction that challenge the boundaries of reality. Fans of contemporary narratives will find compelling stories in our contemporary fiction section. Embark on epic journeys with our fantasy and science fiction titles,

Shop Trending Books and New Releases

Explore our new releases for the most recent additions in romance books, fantasy books, graphic novels, crime and mystery books, science fiction books as well as biographies, cookbooks, self help books, tarot cards, fortunetelling and much more. With titles covering current trends, booktok and bookstagram recommendations, and emerging authors, BookLoop remains your go-to local australian bookstore for buying books online across all book genres.

Shop Best Books By Collection

Stay updated with the literary world by browsing our trending books, featuring the latest bestsellers and critically acclaimed works. Explore titles from popular brands like Minecraft, Pokemon, Star Wars, Bluey, Lonely Planet, ABIA award winners, Peppa Pig, and our specialised collection of ADHD books. At BookLoop, we are committed to providing a diverse and enriching reading experience for all.