Trending Bestseller

Shrinkage for Stabilizing the Detection of Changepoints in Covariances for High-Dimensional Data

Mounir Zahnouni

No reviews yet Write a Review
Paperback / softback
02 April 2024
$105.00
Ships in 5–7 business days
Hurry up! Current stock:
Diploma Thesis from the year 2012 in the subject Mathematics, grade: 1,0, University of Kaiserslautern (Fakultät für Mathematik), language: English, abstract: In mathematical statistics, detecting changes in parameters of real-life data series, known as change-point problems, is crucial. Originating in quality control during the 1950s, these problems have widespread applications today, spanning fields like economics, finance, medicine, and geology. In finance, fluctuations in asset returns can violate assumptions of constant variance, leading to inaccurate forecasts.Chapter 2 briefly discusses the univariate case, focusing on detecting changes in mean and variance parameters over time. The Cumulative Sums (CUSUM) test statistics, derived from likelihood ratios, serve as change-point estimators. However, their asymptotic distribution complexity and slow convergence limit applicability to small sample sizes. Nevertheless, asymptotic quantiles help determine if changes have occurred.Chapter 3 extends this analysis to the multivariate case, specifically addressing changes in covariance matrices. Estimating the covariance matrix, particularly in scenarios with many variables and few observations, poses challenges. Shrinkage estimators, like the Ledoit-Wolf (LW) estimator, offer improvements over sample covariance matrices, especially in small sample sizes. The Rao-Blackwell theorem leads to the development of the Rao-Blackwellized Ledoit-Wolf (RBLW) estimator, enhancing performance under Gaussian assumptions.A simulation study in Chapter 5 demonstrates the effectiveness of using these shrinkage estimators in detecting change-points, resulting in improved test power and accuracy. However, due to the absence of an asymptotic distribution for the test statistics, quantiles must be obtained through simulation.

This product hasn't received any reviews yet. Be the first to review this product!

$105.00
Ships in 5–7 business days
Hurry up! Current stock:

Shrinkage for Stabilizing the Detection of Changepoints in Covariances for High-Dimensional Data

$105.00

Description

Diploma Thesis from the year 2012 in the subject Mathematics, grade: 1,0, University of Kaiserslautern (Fakultät für Mathematik), language: English, abstract: In mathematical statistics, detecting changes in parameters of real-life data series, known as change-point problems, is crucial. Originating in quality control during the 1950s, these problems have widespread applications today, spanning fields like economics, finance, medicine, and geology. In finance, fluctuations in asset returns can violate assumptions of constant variance, leading to inaccurate forecasts.Chapter 2 briefly discusses the univariate case, focusing on detecting changes in mean and variance parameters over time. The Cumulative Sums (CUSUM) test statistics, derived from likelihood ratios, serve as change-point estimators. However, their asymptotic distribution complexity and slow convergence limit applicability to small sample sizes. Nevertheless, asymptotic quantiles help determine if changes have occurred.Chapter 3 extends this analysis to the multivariate case, specifically addressing changes in covariance matrices. Estimating the covariance matrix, particularly in scenarios with many variables and few observations, poses challenges. Shrinkage estimators, like the Ledoit-Wolf (LW) estimator, offer improvements over sample covariance matrices, especially in small sample sizes. The Rao-Blackwell theorem leads to the development of the Rao-Blackwellized Ledoit-Wolf (RBLW) estimator, enhancing performance under Gaussian assumptions.A simulation study in Chapter 5 demonstrates the effectiveness of using these shrinkage estimators in detecting change-points, resulting in improved test power and accuracy. However, due to the absence of an asymptotic distribution for the test statistics, quantiles must be obtained through simulation.

Customers Also Viewed

Buy Books Online at BookLoop

Discover your next great read at BookLoop, Australiand online bookstore offering a vast selection of titles across various genres and interests. Whether you're curious about what's trending or searching for graphic novels that captivate, thrilling crime and mystery fiction, or exhilarating action and adventure stories, our curated collections have something for every reader. Delve into imaginative fantasy worlds or explore the realms of science fiction that challenge the boundaries of reality. Fans of contemporary narratives will find compelling stories in our contemporary fiction section. Embark on epic journeys with our fantasy and science fiction titles,

Shop Trending Books and New Releases

Explore our new releases for the most recent additions in romance books, fantasy books, graphic novels, crime and mystery books, science fiction books as well as biographies, cookbooks, self help books, tarot cards, fortunetelling and much more. With titles covering current trends, booktok and bookstagram recommendations, and emerging authors, BookLoop remains your go-to local australian bookstore for buying books online across all book genres.

Shop Best Books By Collection

Stay updated with the literary world by browsing our trending books, featuring the latest bestsellers and critically acclaimed works. Explore titles from popular brands like Minecraft, Pokemon, Star Wars, Bluey, Lonely Planet, ABIA award winners, Peppa Pig, and our specialised collection of ADHD books. At BookLoop, we are committed to providing a diverse and enriching reading experience for all.