Trending Bestseller

Responsible AI in the Enterprise

Practical AI risk management for explainable, auditable, and safe models with hyperscalers and Azure OpenAI

Adnan Masood

No reviews yet Write a Review
Paperback / softback
31 July 2023
$98.00
Ships in 5–7 business days
Hurry up! Current stock:

Build and deploy your AI models successfully by exploring model governance, fairness, bias, and potential pitfalls

Purchase of the print or Kindle book includes a free PDF eBook

Key Features

  • Learn ethical AI principles, frameworks, and governance
  • Understand the concepts of fairness assessment and bias mitigation
  • Introduce explainable AI and transparency in your machine learning models

Book Description

Responsible AI in the Enterprise is a comprehensive guide to implementing ethical, transparent, and compliant AI systems in an organization. With a focus on understanding key concepts of machine learning models, this book equips you with techniques and algorithms to tackle complex issues such as bias, fairness, and model governance.

Throughout the book, you'll gain an understanding of FairLearn and InterpretML, along with Google What-If Tool, ML Fairness Gym, IBM AI 360 Fairness tool, and Aequitas. You'll uncover various aspects of responsible AI, including model interpretability, monitoring and management of model drift, and compliance recommendations. You'll gain practical insights into using AI governance tools to ensure fairness, bias mitigation, explainability, privacy compliance, and privacy in an enterprise setting. Additionally, you'll explore interpretability toolkits and fairness measures offered by major cloud AI providers like IBM, Amazon, Google, and Microsoft, while discovering how to use FairLearn for fairness assessment and bias mitigation. You'll also learn to build explainable models using global and local feature summary, local surrogate model, Shapley values, anchors, and counterfactual explanations.

By the end of this book, you'll be well-equipped with tools and techniques to create transparent and accountable machine learning models.

What you will learn

  • Understand explainable AI fundamentals, underlying methods, and techniques
  • Explore model governance, including building explainable, auditable, and interpretable machine learning models
  • Use partial dependence plot, global feature summary, individual condition expectation, and feature interaction
  • Build explainable models with global and local feature summary, and influence functions in practice
  • Design and build explainable machine learning pipelines with transparency
  • Discover Microsoft FairLearn and marketplace for different open-source explainable AI tools and cloud platforms

Who this book is for

This book is for data scientists, machine learning engineers, AI practitioners, IT professionals, business stakeholders, and AI ethicists who are responsible for implementing AI models in their organizations.

Table of Contents

  1. A Primer on Explainable and Ethical AI
  2. Algorithms Gone Wild - Bias's Greatest Hits
  3. Opening the Algorithmic Blackbox
  4. Operationalizing Model Monitoring
  5. Model Governance - Audit, and Compliance Standards & Recommendations
  6. Enterprise Starter Kit for Fairness, Accountability and Transparency
  7. Interpretability Toolkits and Fairness Measures
  8. Fairness in AI System with Microsoft FairLearn
  9. Fairness Assessment and Bias Mitigation with FairLearn and Responsible AI Toolbox
  10. Foundational Models and Azure OpenAI

This product hasn't received any reviews yet. Be the first to review this product!

$98.00
Ships in 5–7 business days
Hurry up! Current stock:

Responsible AI in the Enterprise

$98.00

Description

Build and deploy your AI models successfully by exploring model governance, fairness, bias, and potential pitfalls

Purchase of the print or Kindle book includes a free PDF eBook

Key Features

  • Learn ethical AI principles, frameworks, and governance
  • Understand the concepts of fairness assessment and bias mitigation
  • Introduce explainable AI and transparency in your machine learning models

Book Description

Responsible AI in the Enterprise is a comprehensive guide to implementing ethical, transparent, and compliant AI systems in an organization. With a focus on understanding key concepts of machine learning models, this book equips you with techniques and algorithms to tackle complex issues such as bias, fairness, and model governance.

Throughout the book, you'll gain an understanding of FairLearn and InterpretML, along with Google What-If Tool, ML Fairness Gym, IBM AI 360 Fairness tool, and Aequitas. You'll uncover various aspects of responsible AI, including model interpretability, monitoring and management of model drift, and compliance recommendations. You'll gain practical insights into using AI governance tools to ensure fairness, bias mitigation, explainability, privacy compliance, and privacy in an enterprise setting. Additionally, you'll explore interpretability toolkits and fairness measures offered by major cloud AI providers like IBM, Amazon, Google, and Microsoft, while discovering how to use FairLearn for fairness assessment and bias mitigation. You'll also learn to build explainable models using global and local feature summary, local surrogate model, Shapley values, anchors, and counterfactual explanations.

By the end of this book, you'll be well-equipped with tools and techniques to create transparent and accountable machine learning models.

What you will learn

  • Understand explainable AI fundamentals, underlying methods, and techniques
  • Explore model governance, including building explainable, auditable, and interpretable machine learning models
  • Use partial dependence plot, global feature summary, individual condition expectation, and feature interaction
  • Build explainable models with global and local feature summary, and influence functions in practice
  • Design and build explainable machine learning pipelines with transparency
  • Discover Microsoft FairLearn and marketplace for different open-source explainable AI tools and cloud platforms

Who this book is for

This book is for data scientists, machine learning engineers, AI practitioners, IT professionals, business stakeholders, and AI ethicists who are responsible for implementing AI models in their organizations.

Table of Contents

  1. A Primer on Explainable and Ethical AI
  2. Algorithms Gone Wild - Bias's Greatest Hits
  3. Opening the Algorithmic Blackbox
  4. Operationalizing Model Monitoring
  5. Model Governance - Audit, and Compliance Standards & Recommendations
  6. Enterprise Starter Kit for Fairness, Accountability and Transparency
  7. Interpretability Toolkits and Fairness Measures
  8. Fairness in AI System with Microsoft FairLearn
  9. Fairness Assessment and Bias Mitigation with FairLearn and Responsible AI Toolbox
  10. Foundational Models and Azure OpenAI

Customers Also Viewed

Buy Books Online at BookLoop

Discover your next great read at BookLoop, Australiand online bookstore offering a vast selection of titles across various genres and interests. Whether you're curious about what's trending or searching for graphic novels that captivate, thrilling crime and mystery fiction, or exhilarating action and adventure stories, our curated collections have something for every reader. Delve into imaginative fantasy worlds or explore the realms of science fiction that challenge the boundaries of reality. Fans of contemporary narratives will find compelling stories in our contemporary fiction section. Embark on epic journeys with our fantasy and science fiction titles,

Shop Trending Books and New Releases

Explore our new releases for the most recent additions in romance books, fantasy books, graphic novels, crime and mystery books, science fiction books as well as biographies, cookbooks, self help books, tarot cards, fortunetelling and much more. With titles covering current trends, booktok and bookstagram recommendations, and emerging authors, BookLoop remains your go-to local australian bookstore for buying books online across all book genres.

Shop Best Books By Collection

Stay updated with the literary world by browsing our trending books, featuring the latest bestsellers and critically acclaimed works. Explore titles from popular brands like Minecraft, Pokemon, Star Wars, Bluey, Lonely Planet, ABIA award winners, Peppa Pig, and our specialised collection of ADHD books. At BookLoop, we are committed to providing a diverse and enriching reading experience for all.