Master's Thesis from the year 2014 in the subject Computer Sciences - Artificial Intelligence, grade: A, , course: Master Of Technology Computer Science and Engineering, language: English, abstract: This research presents the optimization of radial basis function (RBF) neural network by means of aFOA and establishment of network model, adopting it with the combination of the evaluation of the mean impact value (MIV) to select variables. The form of amended fruit fly optimization algorithm (aFOA) is easy to learn and has the characteristics of quick convergence and not readily dropping into local optimum. The validity of model is tested by two actual examples, furthermore, it is simpler to learn, more stable and practical.Our aim is to find a variable function based on such a large number of experimental data in many scientific experiments such as Near Infrared Spectral data and Atlas data. But this kind of function is often highly uncertain, nonlinear dynamic model. When we perform on the data regression analysis, this requires choosing appropriate independent variables to establish the independent variables on the dependent variables regression model. Generally, experiments often get more variables, some variables affecting the results may be smaller or no influence at all, even some variable acquisition need to pay a large cost. If drawing unimportant variables into model, we can reduce the precision of the model, but cannot reach the ideal result. At the same time, a large number of variables may also exist in multicollinearity. Therefore, the independent variable screening before modeling is very necessary. Because the fruit fly optimization algorithm has concise form, is easy to learn, and have fault tolerant ability, besides algorithm realizes time shorter, and the iterative optimization is difficult to fall into the local extreme value. And radiate basis function (RBF) neural network's structure is simple, training concise and fasting speed of convergence by
Radial basis neural network optimization using fruit fly
RRP:
$126.00
Description
Master's Thesis from the year 2014 in the subject Computer Sciences - Artificial Intelligence, grade: A, , course: Master Of Technology Computer Science and Engineering, language: English, abstract: This research presents the optimization of radial basis function (RBF) neural network by means of aFOA and establishment of network model, adopting it with the combination of the evaluation of the mean impact value (MIV) to select variables. The form of amended fruit fly optimization algorithm (aFOA) is easy to learn and has the characteristics of quick convergence and not readily dropping into local optimum. The validity of model is tested by two actual examples, furthermore, it is simpler to learn, more stable and practical.Our aim is to find a variable function based on such a large number of experimental data in many scientific experiments such as Near Infrared Spectral data and Atlas data. But this kind of function is often highly uncertain, nonlinear dynamic model. When we perform on the data regression analysis, this requires choosing appropriate independent variables to establish the independent variables on the dependent variables regression model. Generally, experiments often get more variables, some variables affecting the results may be smaller or no influence at all, even some variable acquisition need to pay a large cost. If drawing unimportant variables into model, we can reduce the precision of the model, but cannot reach the ideal result. At the same time, a large number of variables may also exist in multicollinearity. Therefore, the independent variable screening before modeling is very necessary. Because the fruit fly optimization algorithm has concise form, is easy to learn, and have fault tolerant ability, besides algorithm realizes time shorter, and the iterative optimization is difficult to fall into the local extreme value. And radiate basis function (RBF) neural network's structure is simple, training concise and fasting speed of convergence by
Fully Tuned Radial Basis Function Neural Networks for Flight Control presents the use of the Radial Basis Function (RBF) neural networks for adaptive control of nonlinear systems with emphasis ...
Simon Haykin is a well-known author of books on neural networks.
* An authoritative book dealing with cutting edge technology.
* This book has no competition.
People are facing more and more NP-complete or NP-hard problems of a combinatorial nature and of a continuous nature in economic, military and management practice. There are two ways in which one can...
Discover your next great read at BookLoop, Australiand online bookstore offering a vast selection of titles across various genres and interests. Whether you're curious about what's trending or searching for graphic novels that captivate, thrilling crime and mystery fiction, or exhilarating action and adventure stories, our curated collections have something for every reader. Delve into imaginative fantasy worlds or explore the realms of science fiction that challenge the boundaries of reality. Fans of contemporary narratives will find compelling stories in our contemporary fiction section. Embark on epic journeys with our fantasy and science fiction titles,
Shop Trending Books and New Releases
Explore our new releases for the most recent additions in romance books, fantasy books, graphic novels, crime and mystery books, science fiction books as well as biographies, cookbooks, self help books, tarot cards, fortunetelling and much more. With titles covering current trends, booktok and bookstagram recommendations, and emerging authors, BookLoop remains your go-to local australian bookstore for buying books online across all book genres.
Shop Best Books By Collection
Stay updated with the literary world by browsing our trending books, featuring the latest bestsellers and critically acclaimed works. Explore titles from popular brands like Minecraft, Pokemon, Star Wars, Bluey, Lonely Planet, ABIA award winners, Peppa Pig, and our specialised collection of ADHD books. At BookLoop, we are committed to providing a diverse and enriching reading experience for all.
Sign In
your cart
Your cart is empty
Menu
Search
PRE-SALES
If you have any questions before making a purchase chat with our online operators to get more information.