Trending Bestseller

Quantum Limits on Measurement and Control of a Mechanical Oscillator

Vivishek Sudhir

No reviews yet Write a Review
Hardback
04 December 2017
$184.00
Ships in 5–7 business days
Hurry up! Current stock:
This thesis reports on experiments in which the motion of a mechanical oscillator is measured with unprecedented precision. The position fluctuations of the oscillator-a glass nanostring-are measured with an imprecision that is sufficient to resolve its quantum zero-point motion within its thermal decoherence time. The concomitant observation of measurement back-action, in accordance with Heisenberg's uncertainty principle, verifies the principles of linear quantum measurements on a macroscopic mechanical object. The record of the measurement is used to perform feedback control so as to suppress both classical thermal motion and quantum measurement back-action.
These results verify some of the central and long-standing predictions of quantum measurement theory applied to a macroscopic object. The act of measurement not only perturbs the subject of the measurement-the mechanical oscillator-but also changes the state of the light used to make the measurement. This prediction is verified by demonstrating that the optical field, after having interacted with the mechanical oscillator, contains quantum correlations that render its quadrature fluctuations smaller than those of the vacuum - i.e., the light is squeezed.
Lastly, the thesis reports on some of the first feedback control experiments involving macroscopic objects in the quantum regime, together with an exploration of the quantum limit of feedback control. The book offers a pedagogical account of linear measurement theory, its realization via optical interferometry, and contains a detailed guide to precision optical interferometry..

This product hasn't received any reviews yet. Be the first to review this product!

$184.00
Ships in 5–7 business days
Hurry up! Current stock:

Quantum Limits on Measurement and Control of a Mechanical Oscillator

$184.00

Description

This thesis reports on experiments in which the motion of a mechanical oscillator is measured with unprecedented precision. The position fluctuations of the oscillator-a glass nanostring-are measured with an imprecision that is sufficient to resolve its quantum zero-point motion within its thermal decoherence time. The concomitant observation of measurement back-action, in accordance with Heisenberg's uncertainty principle, verifies the principles of linear quantum measurements on a macroscopic mechanical object. The record of the measurement is used to perform feedback control so as to suppress both classical thermal motion and quantum measurement back-action.
These results verify some of the central and long-standing predictions of quantum measurement theory applied to a macroscopic object. The act of measurement not only perturbs the subject of the measurement-the mechanical oscillator-but also changes the state of the light used to make the measurement. This prediction is verified by demonstrating that the optical field, after having interacted with the mechanical oscillator, contains quantum correlations that render its quadrature fluctuations smaller than those of the vacuum - i.e., the light is squeezed.
Lastly, the thesis reports on some of the first feedback control experiments involving macroscopic objects in the quantum regime, together with an exploration of the quantum limit of feedback control. The book offers a pedagogical account of linear measurement theory, its realization via optical interferometry, and contains a detailed guide to precision optical interferometry..

Customers Also Viewed

Buy Books Online at BookLoop

Discover your next great read at BookLoop, Australiand online bookstore offering a vast selection of titles across various genres and interests. Whether you're curious about what's trending or searching for graphic novels that captivate, thrilling crime and mystery fiction, or exhilarating action and adventure stories, our curated collections have something for every reader. Delve into imaginative fantasy worlds or explore the realms of science fiction that challenge the boundaries of reality. Fans of contemporary narratives will find compelling stories in our contemporary fiction section. Embark on epic journeys with our fantasy and science fiction titles,

Shop Trending Books and New Releases

Explore our new releases for the most recent additions in romance books, fantasy books, graphic novels, crime and mystery books, science fiction books as well as biographies, cookbooks, self help books, tarot cards, fortunetelling and much more. With titles covering current trends, booktok and bookstagram recommendations, and emerging authors, BookLoop remains your go-to local australian bookstore for buying books online across all book genres.

Shop Best Books By Collection

Stay updated with the literary world by browsing our trending books, featuring the latest bestsellers and critically acclaimed works. Explore titles from popular brands like Minecraft, Pokemon, Star Wars, Bluey, Lonely Planet, ABIA award winners, Peppa Pig, and our specialised collection of ADHD books. At BookLoop, we are committed to providing a diverse and enriching reading experience for all.