Trending Bestseller

Probing Two-Dimensional Quantum Fluids with Cavity Optomechanics

Yauhen Sachkou

No reviews yet Write a Review
Hardback
18 July 2020
$184.00
Ships in 5–7 business days
Hurry up! Current stock:
Superfluid helium is a quantum liquid that exhibits a range of counter-intuitive phenomena such as frictionless flow. Quantized vortices are a particularly important feature of superfluid helium, and all superfluids, characterized by a circulation that can only take prescribed integer values. However, the strong interactions between atoms in superfluid helium prohibit quantitative theory of vortex behaviour. Experiments have similarly not been able to observe coherent vortex dynamics.
This thesis resolves this challenge, bringing microphotonic techniques to bear on two-dimensional superfluid helium, observing coherent vortex dynamics for the first time, and achieving this on a silicon chip. This represents a major scientific contribution, as it opens the door not only to providing a better understanding of this esoteric quantum state of matter, but also to building new quantum technologies based upon it, and to understanding the dynamics of astrophysical superfluids such as those thought to exist in the core of neutron stars.


This product hasn't received any reviews yet. Be the first to review this product!

$184.00
Ships in 5–7 business days
Hurry up! Current stock:

Probing Two-Dimensional Quantum Fluids with Cavity Optomechanics

$184.00

Description

Superfluid helium is a quantum liquid that exhibits a range of counter-intuitive phenomena such as frictionless flow. Quantized vortices are a particularly important feature of superfluid helium, and all superfluids, characterized by a circulation that can only take prescribed integer values. However, the strong interactions between atoms in superfluid helium prohibit quantitative theory of vortex behaviour. Experiments have similarly not been able to observe coherent vortex dynamics.
This thesis resolves this challenge, bringing microphotonic techniques to bear on two-dimensional superfluid helium, observing coherent vortex dynamics for the first time, and achieving this on a silicon chip. This represents a major scientific contribution, as it opens the door not only to providing a better understanding of this esoteric quantum state of matter, but also to building new quantum technologies based upon it, and to understanding the dynamics of astrophysical superfluids such as those thought to exist in the core of neutron stars.


Customers Also Viewed

Buy Books Online at BookLoop

Discover your next great read at BookLoop, Australiand online bookstore offering a vast selection of titles across various genres and interests. Whether you're curious about what's trending or searching for graphic novels that captivate, thrilling crime and mystery fiction, or exhilarating action and adventure stories, our curated collections have something for every reader. Delve into imaginative fantasy worlds or explore the realms of science fiction that challenge the boundaries of reality. Fans of contemporary narratives will find compelling stories in our contemporary fiction section. Embark on epic journeys with our fantasy and science fiction titles,

Shop Trending Books and New Releases

Explore our new releases for the most recent additions in romance books, fantasy books, graphic novels, crime and mystery books, science fiction books as well as biographies, cookbooks, self help books, tarot cards, fortunetelling and much more. With titles covering current trends, booktok and bookstagram recommendations, and emerging authors, BookLoop remains your go-to local australian bookstore for buying books online across all book genres.

Shop Best Books By Collection

Stay updated with the literary world by browsing our trending books, featuring the latest bestsellers and critically acclaimed works. Explore titles from popular brands like Minecraft, Pokemon, Star Wars, Bluey, Lonely Planet, ABIA award winners, Peppa Pig, and our specialised collection of ADHD books. At BookLoop, we are committed to providing a diverse and enriching reading experience for all.