Trending Bestseller

On the degradation of wood pellets during pneumatic conveying

Experiments and DEM-CFD simulations

Julian Jägers

No reviews yet Write a Review
Paperback / softback
22 February 2021
$97.00
In Stock: Ships in 4-6 Working Days
In Stock: Ships in 7-9 Days
Hurry up! Current stock:
In the present thesis, the dependence of wood pellet degradation and fines formation during pneumatic conveying on operating conditions like air and product mass flow or shape of pipe components is investigated. Both the size reduction of the cylindrical pellets during pneumatic transport caused by mechanical impacts and the prevailing pressure losses are analysed experimentally and numerically. Single particle impact tests are performed for investigating the breakage behaviour of wood pellets including the effect of particle length, impact velocity and collision angle. Based on the empirical correlations derived, a numerical degradation model is developed and implemented into the in-house DEM code of the Department of Energy Plant and Technology of the Ruhr-University Bochum. Experimental and numerical investigations are conducted using coupled DEM-CFD simulations to obtain detailed insights into flow conditions, particle motion and the mechanical loads on the pellets during pneumatic conveying. Numerical results show good qualitative agreement with the experimentally determined degradation rates and prevailing pressure losses. The degradation model developed allows detailed investigation into wood pellet degradation and fines formation during pneumatic conveying and enables the design of pipe configurations and operating conditions to prevent particle size reduction and excessive pressure losses.

This product hasn't received any reviews yet. Be the first to review this product!

$97.00
In Stock: Ships in 4-6 Working Days
In Stock: Ships in 7-9 Days
Hurry up! Current stock:

On the degradation of wood pellets during pneumatic conveying

$97.00

Description

In the present thesis, the dependence of wood pellet degradation and fines formation during pneumatic conveying on operating conditions like air and product mass flow or shape of pipe components is investigated. Both the size reduction of the cylindrical pellets during pneumatic transport caused by mechanical impacts and the prevailing pressure losses are analysed experimentally and numerically. Single particle impact tests are performed for investigating the breakage behaviour of wood pellets including the effect of particle length, impact velocity and collision angle. Based on the empirical correlations derived, a numerical degradation model is developed and implemented into the in-house DEM code of the Department of Energy Plant and Technology of the Ruhr-University Bochum. Experimental and numerical investigations are conducted using coupled DEM-CFD simulations to obtain detailed insights into flow conditions, particle motion and the mechanical loads on the pellets during pneumatic conveying. Numerical results show good qualitative agreement with the experimentally determined degradation rates and prevailing pressure losses. The degradation model developed allows detailed investigation into wood pellet degradation and fines formation during pneumatic conveying and enables the design of pipe configurations and operating conditions to prevent particle size reduction and excessive pressure losses.

Customers Also Viewed

Buy Books Online at BookLoop

Discover your next great read at BookLoop, Australiand online bookstore offering a vast selection of titles across various genres and interests. Whether you're curious about what's trending or searching for graphic novels that captivate, thrilling crime and mystery fiction, or exhilarating action and adventure stories, our curated collections have something for every reader. Delve into imaginative fantasy worlds or explore the realms of science fiction that challenge the boundaries of reality. Fans of contemporary narratives will find compelling stories in our contemporary fiction section. Embark on epic journeys with our fantasy and science fiction titles,

Shop Trending Books and New Releases

Explore our new releases for the most recent additions in romance books, fantasy books, graphic novels, crime and mystery books, science fiction books as well as biographies, cookbooks, self help books, tarot cards, fortunetelling and much more. With titles covering current trends, booktok and bookstagram recommendations, and emerging authors, BookLoop remains your go-to local australian bookstore for buying books online across all book genres.

Shop Best Books By Collection

Stay updated with the literary world by browsing our trending books, featuring the latest bestsellers and critically acclaimed works. Explore titles from popular brands like Minecraft, Pokemon, Star Wars, Bluey, Lonely Planet, ABIA award winners, Peppa Pig, and our specialised collection of ADHD books. At BookLoop, we are committed to providing a diverse and enriching reading experience for all.