Trending Bestseller

Netzwerke. Ein spezielles Gebiet der Graphentheorie

Sandra Riedemann

No reviews yet Write a Review
Paperback / softback
03 July 2009
$123.00
Ships in 5–7 business days
Hurry up! Current stock:
Examensarbeit aus dem Jahr 2007 im Fachbereich Mathematik - Angewandte Mathematik, Note: 1-, Universität Hamburg, Sprache: Deutsch, Abstract: EinleitungDie vorliegende Arbeit soll einen Einblick in die Graphentheorie geben. Dabei wird insbesondere auf Netzwerke als graphische Darstellungsform eingegangen. Bevor aber ein Blick auf die Netzwerke geworfen werden kann, sollen in Kapitel 1 einige Grundbegriffe der Graphentheorie erläutert werden. Diese Grundbegriffe wurden im Jahr 1736 eingeführt als Leonard Euler sein „Königsberger Brückenproblem" veröffentlichte in dem er versucht, einen Rundweg durch die Stadt Königsberg zu finden, ohne dabei eine der sieben Brücken zweimal passieren zu müssen. Am Ende de Rundganges sollte sich der Spaziergänger am Ausgangspunkt wiederfinden. Euler zeigt durch die Übertragung des Königsberger Stadtplanes in einen ungerichteten Graphen, dass es einen solchen Weg nicht gibt. Die von Euler eingeführten Begriffe lassen sich aber auch auf gerichtete Graphen übertragen, die in Kapitel 2 behandelt werden. Weiterhin soll in diesem Kapitel der Begriff des Turniers erläutert werden. Im 3. Kapitel werden schließlich die Netzwerke thematisiert. Der Leser wird mit Begriffen wie „Flüsse" und „Schnitte" vertraut gemacht, um den Maximum-Fluss-Minimum-Schnitt-Satz von Ford und Fulkerson beweisen zu können. In einem ausführlichen Beispiel ist dann der Algorithmus von Ford und Fulkerson dargestellt. Kapitel 4 befasst sich mit „trennenden Mengen". Der Schwerpunkt dieses Kapitels liegt auf dem Satz von Menger und den daraus resultierenden Folgerungen, die mit dem Maximum-Fluss-Minimum-Schnitt-Satz des vorherigen Kapitels bewiesen werden können. Zum Schluss werden im 5. Kapitel die bisher erzielten Ergebnisse auf zwei Bespiele angewendet. In beiden Beispielen steht der Maximum-Fluss-Minimum-Schnitt-Satz im Vordergrund.

This product hasn't received any reviews yet. Be the first to review this product!

$123.00
Ships in 5–7 business days
Hurry up! Current stock:

Netzwerke. Ein spezielles Gebiet der Graphentheorie

$123.00

Description

Examensarbeit aus dem Jahr 2007 im Fachbereich Mathematik - Angewandte Mathematik, Note: 1-, Universität Hamburg, Sprache: Deutsch, Abstract: EinleitungDie vorliegende Arbeit soll einen Einblick in die Graphentheorie geben. Dabei wird insbesondere auf Netzwerke als graphische Darstellungsform eingegangen. Bevor aber ein Blick auf die Netzwerke geworfen werden kann, sollen in Kapitel 1 einige Grundbegriffe der Graphentheorie erläutert werden. Diese Grundbegriffe wurden im Jahr 1736 eingeführt als Leonard Euler sein „Königsberger Brückenproblem" veröffentlichte in dem er versucht, einen Rundweg durch die Stadt Königsberg zu finden, ohne dabei eine der sieben Brücken zweimal passieren zu müssen. Am Ende de Rundganges sollte sich der Spaziergänger am Ausgangspunkt wiederfinden. Euler zeigt durch die Übertragung des Königsberger Stadtplanes in einen ungerichteten Graphen, dass es einen solchen Weg nicht gibt. Die von Euler eingeführten Begriffe lassen sich aber auch auf gerichtete Graphen übertragen, die in Kapitel 2 behandelt werden. Weiterhin soll in diesem Kapitel der Begriff des Turniers erläutert werden. Im 3. Kapitel werden schließlich die Netzwerke thematisiert. Der Leser wird mit Begriffen wie „Flüsse" und „Schnitte" vertraut gemacht, um den Maximum-Fluss-Minimum-Schnitt-Satz von Ford und Fulkerson beweisen zu können. In einem ausführlichen Beispiel ist dann der Algorithmus von Ford und Fulkerson dargestellt. Kapitel 4 befasst sich mit „trennenden Mengen". Der Schwerpunkt dieses Kapitels liegt auf dem Satz von Menger und den daraus resultierenden Folgerungen, die mit dem Maximum-Fluss-Minimum-Schnitt-Satz des vorherigen Kapitels bewiesen werden können. Zum Schluss werden im 5. Kapitel die bisher erzielten Ergebnisse auf zwei Bespiele angewendet. In beiden Beispielen steht der Maximum-Fluss-Minimum-Schnitt-Satz im Vordergrund.

Customers Also Viewed

Buy Books Online at BookLoop

Discover your next great read at BookLoop, Australiand online bookstore offering a vast selection of titles across various genres and interests. Whether you're curious about what's trending or searching for graphic novels that captivate, thrilling crime and mystery fiction, or exhilarating action and adventure stories, our curated collections have something for every reader. Delve into imaginative fantasy worlds or explore the realms of science fiction that challenge the boundaries of reality. Fans of contemporary narratives will find compelling stories in our contemporary fiction section. Embark on epic journeys with our fantasy and science fiction titles,

Shop Trending Books and New Releases

Explore our new releases for the most recent additions in romance books, fantasy books, graphic novels, crime and mystery books, science fiction books as well as biographies, cookbooks, self help books, tarot cards, fortunetelling and much more. With titles covering current trends, booktok and bookstagram recommendations, and emerging authors, BookLoop remains your go-to local australian bookstore for buying books online across all book genres.

Shop Best Books By Collection

Stay updated with the literary world by browsing our trending books, featuring the latest bestsellers and critically acclaimed works. Explore titles from popular brands like Minecraft, Pokemon, Star Wars, Bluey, Lonely Planet, ABIA award winners, Peppa Pig, and our specialised collection of ADHD books. At BookLoop, we are committed to providing a diverse and enriching reading experience for all.