Trending Bestseller

Differenzierbare Räume

Otto Schafmeister

No reviews yet Write a Review
Paperback / softback
01 January 1970
$92.00
Ships in 5–7 business days
Hurry up! Current stock:
Der Begriff des differenzierbaren Raumes wurde von K. SPALLEK in [11] eingeführt. Es handelt sich dabei um eine Verallgemeinerung des Begriffs der differenzierbaren Mannig­ faltigkeit, ähnlich wie komplexe Mannigfaltigkeiten durch komplexe Räume verall­ gemeinert werden. Ferner besteht eine Verbindung zur Funktionentheorie dadurch, daß sich jeder komplexe Raum in natürlicher Weise als differenzierbarer Raum auffassen läßt. Dadurch lassen sich gewisse Ergebnisse aus der Theorie der differenzierbaren Räume auf komplexe Räume anwenden. Ein Paar D = (X, d) heißt k-differenzierbarer Unterraum des IRn, wenn Xc IRn eine Teilmenge ist und d eine Garbe über X, die dadurch entsteht, daß man die Garbe ~k der Keime von Ck-Funktionen im IRn auf X einschränkt und dann durch eine Idealuntergarbe ß dividiert, die folgende Eigenschaften hat: a) ßx=l=~~, b) ß ' ~~-1 n ~~ = ß (für alle x EX). x x (Die Bedingung b) muß aus gewissen beweistechnischen Gründen gefordert werden und ist in vielen Fällen von selbst erfüllt.) Sind D = (X, d) und D' = (X', d') k-differenzierbarer Unterräume des IRn bzw.

This product hasn't received any reviews yet. Be the first to review this product!

$92.00
Ships in 5–7 business days
Hurry up! Current stock:

Differenzierbare Räume

$92.00

Description

Der Begriff des differenzierbaren Raumes wurde von K. SPALLEK in [11] eingeführt. Es handelt sich dabei um eine Verallgemeinerung des Begriffs der differenzierbaren Mannig­ faltigkeit, ähnlich wie komplexe Mannigfaltigkeiten durch komplexe Räume verall­ gemeinert werden. Ferner besteht eine Verbindung zur Funktionentheorie dadurch, daß sich jeder komplexe Raum in natürlicher Weise als differenzierbarer Raum auffassen läßt. Dadurch lassen sich gewisse Ergebnisse aus der Theorie der differenzierbaren Räume auf komplexe Räume anwenden. Ein Paar D = (X, d) heißt k-differenzierbarer Unterraum des IRn, wenn Xc IRn eine Teilmenge ist und d eine Garbe über X, die dadurch entsteht, daß man die Garbe ~k der Keime von Ck-Funktionen im IRn auf X einschränkt und dann durch eine Idealuntergarbe ß dividiert, die folgende Eigenschaften hat: a) ßx=l=~~, b) ß ' ~~-1 n ~~ = ß (für alle x EX). x x (Die Bedingung b) muß aus gewissen beweistechnischen Gründen gefordert werden und ist in vielen Fällen von selbst erfüllt.) Sind D = (X, d) und D' = (X', d') k-differenzierbarer Unterräume des IRn bzw.

Customers Also Viewed

Buy Books Online at BookLoop

Discover your next great read at BookLoop, Australiand online bookstore offering a vast selection of titles across various genres and interests. Whether you're curious about what's trending or searching for graphic novels that captivate, thrilling crime and mystery fiction, or exhilarating action and adventure stories, our curated collections have something for every reader. Delve into imaginative fantasy worlds or explore the realms of science fiction that challenge the boundaries of reality. Fans of contemporary narratives will find compelling stories in our contemporary fiction section. Embark on epic journeys with our fantasy and science fiction titles,

Shop Trending Books and New Releases

Explore our new releases for the most recent additions in romance books, fantasy books, graphic novels, crime and mystery books, science fiction books as well as biographies, cookbooks, self help books, tarot cards, fortunetelling and much more. With titles covering current trends, booktok and bookstagram recommendations, and emerging authors, BookLoop remains your go-to local australian bookstore for buying books online across all book genres.

Shop Best Books By Collection

Stay updated with the literary world by browsing our trending books, featuring the latest bestsellers and critically acclaimed works. Explore titles from popular brands like Minecraft, Pokemon, Star Wars, Bluey, Lonely Planet, ABIA award winners, Peppa Pig, and our specialised collection of ADHD books. At BookLoop, we are committed to providing a diverse and enriching reading experience for all.