Manipulation using dextrous robot hands has been an exciting yet frustrating research topic for the last several years. While significant progress has occurred in the design, construction, and low level control of robotic hands, researchers are up against fundamental problems in developing algorithms for real-time computations in multi-sensory processing and motor control. The aim of this book is to explore parallels in sensorimotor integration in dextrous robot and human hands, addressing the basic question of how the next generation of dextrous hands should evolve. By bringing together experimental psychologists, kinesiologists, computer scientists, electrical engineers, and mechanical engineers, the book covers topics that range from human hand usage in prehension and exploration, to the design and use of robotic sensors and multi-fingered hands, and to control and computational architectures for dextrous hand usage. While the ultimate goal of capturing human hand versatility remains elusive, this book makes an important contribution to the design and control of future dextrous robot hands through a simple underlying message: a topic as complex as dextrous manipulation would best be addressed by collaborative, interdisciplinary research, combining high level and low level views, drawing parallels between human studies and analytic approaches, and integrating sensory data with motor commands. As seen in this text, success has been made through the establishment of such collaborative efforts. The future will hold up to expectations only as researchers become aware of advances in parallel fields and as a common vocabulary emerges from integrated perceptions about manipulation.
Manipulation using dextrous robot hands has been an exciting yet frustrating research topic for the last several years. While significant progress has occurred in the design, construction, and low level control of robotic hands, researchers are up against fundamental problems in developing algorithms for real-time computations in multi-sensory processing and motor control. The aim of this book is to explore parallels in sensorimotor integration in dextrous robot and human hands, addressing the basic question of how the next generation of dextrous hands should evolve. By bringing together experimental psychologists, kinesiologists, computer scientists, electrical engineers, and mechanical engineers, the book covers topics that range from human hand usage in prehension and exploration, to the design and use of robotic sensors and multi-fingered hands, and to control and computational architectures for dextrous hand usage. While the ultimate goal of capturing human hand versatility remains elusive, this book makes an important contribution to the design and control of future dextrous robot hands through a simple underlying message: a topic as complex as dextrous manipulation would best be addressed by collaborative, interdisciplinary research, combining high level and low level views, drawing parallels between human studies and analytic approaches, and integrating sensory data with motor commands. As seen in this text, success has been made through the establishment of such collaborative efforts. The future will hold up to expectations only as researchers become aware of advances in parallel fields and as a common vocabulary emerges from integrated perceptions about manipulation.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it.This work is in the "public domain in the United States of...
The human hand is a complex apparatus. Losing a hand is an extremely traumatic event that changes forever one's life. To replace the human hand with a mechanical analogue is therefore difficult. It...
This book looks at the common problems both human and robotic hands encounter when controlling the large number of joints, actuators and sensors required to efficiently perform motor tasks such as...
Grasping vs. Manipulating.- Kinetostatic Analysis of Robotic Fingers.- Grasp Stability of Underactuated Fingers.- Optimal Design of Underactuated Fingers.- Underactuation between the Fingers.- Design...
"The Human Hand as an Inspiration for Robot Hand Development" presents an edited collection of authoritative contributions in the area of robot hands. The results described in the volume are expected...
Discover your next great read at BookLoop, Australiand online bookstore offering a vast selection of titles across various genres and interests. Whether you're curious about what's trending or searching for graphic novels that captivate, thrilling crime and mystery fiction, or exhilarating action and adventure stories, our curated collections have something for every reader. Delve into imaginative fantasy worlds or explore the realms of science fiction that challenge the boundaries of reality. Fans of contemporary narratives will find compelling stories in our contemporary fiction section. Embark on epic journeys with our fantasy and science fiction titles,
Shop Trending Books and New Releases
Explore our new releases for the most recent additions in romance books, fantasy books, graphic novels, crime and mystery books, science fiction books as well as biographies, cookbooks, self help books, tarot cards, fortunetelling and much more. With titles covering current trends, booktok and bookstagram recommendations, and emerging authors, BookLoop remains your go-to local australian bookstore for buying books online across all book genres.
Shop Best Books By Collection
Stay updated with the literary world by browsing our trending books, featuring the latest bestsellers and critically acclaimed works. Explore titles from popular brands like Minecraft, Pokemon, Star Wars, Bluey, Lonely Planet, ABIA award winners, Peppa Pig, and our specialised collection of ADHD books. At BookLoop, we are committed to providing a diverse and enriching reading experience for all.
Sign In
your cart
Your cart is empty
Menu
Search
PRE-SALES
If you have any questions before making a purchase chat with our online operators to get more information.