Trending Bestseller

Building Intelligent Recommender Systems

Practical Insights for Engineers

Madeleine

No reviews yet Write a Review
Paperback / softback
10 December 2023
$44.00
In Stock: Ships in 3-5 Days
In Stock: Ships in 7-9 Days
Hurry up! Current stock:

Recommender systems have become an integral part of our daily lives, playing a significant role in shaping our online experiences. From suggesting movies on streaming platforms to recommending products on e-commerce websites, these systems have revolutionized the way we discover and consume content. In this subchapter, we will delve into the fundamentals of recommender systems, providing practical insights for engineers in the niche fields of data science and machine learning.

At its core, a recommender system is an algorithmic approach that predicts and provides users with personalized recommendations based on their preferences, historical behavior, and other relevant data. By understanding user preferences and leveraging the power of machine learning, these systems aim to deliver relevant and personalized content, enhancing user satisfaction and engagement.

One of the key challenges in building intelligent recommender systems lies in capturing and representing user preferences accurately. Collaborative filtering, content-based filtering, and hybrid approaches are some of the popular techniques used for generating recommendations. Collaborative filtering analyzes user behavior and preferences to find similarities among users or items, while content-based filtering focuses on the attributes of items to recommend similar ones. Hybrid approaches combine the strengths of both techniques to provide more accurate and diverse recommendations.

Engineers working in the data science and machine learning fields must be well-versed in the underlying algorithms and methodologies used in recommender systems. Matrix factorization, deep learning, and reinforcement learning are some of the advanced techniques employed for improving recommendation accuracy and addressing cold-start problems.

However, building intelligent recommender systems is not solely about algorithms and models. Engineers must also consider factors such as data quality, scalability, interpretability, and ethics. The book "Building Intelligent Recommender Systems: Practical Insights for Engineers" aims to equip engineers with a comprehensive understanding of these factors, providing practical guidance and real-world examples to design and deploy robust recommender systems.

This product hasn't received any reviews yet. Be the first to review this product!

$44.00
In Stock: Ships in 3-5 Days
In Stock: Ships in 7-9 Days
Hurry up! Current stock:

Building Intelligent Recommender Systems

$44.00

Description

Recommender systems have become an integral part of our daily lives, playing a significant role in shaping our online experiences. From suggesting movies on streaming platforms to recommending products on e-commerce websites, these systems have revolutionized the way we discover and consume content. In this subchapter, we will delve into the fundamentals of recommender systems, providing practical insights for engineers in the niche fields of data science and machine learning.

At its core, a recommender system is an algorithmic approach that predicts and provides users with personalized recommendations based on their preferences, historical behavior, and other relevant data. By understanding user preferences and leveraging the power of machine learning, these systems aim to deliver relevant and personalized content, enhancing user satisfaction and engagement.

One of the key challenges in building intelligent recommender systems lies in capturing and representing user preferences accurately. Collaborative filtering, content-based filtering, and hybrid approaches are some of the popular techniques used for generating recommendations. Collaborative filtering analyzes user behavior and preferences to find similarities among users or items, while content-based filtering focuses on the attributes of items to recommend similar ones. Hybrid approaches combine the strengths of both techniques to provide more accurate and diverse recommendations.

Engineers working in the data science and machine learning fields must be well-versed in the underlying algorithms and methodologies used in recommender systems. Matrix factorization, deep learning, and reinforcement learning are some of the advanced techniques employed for improving recommendation accuracy and addressing cold-start problems.

However, building intelligent recommender systems is not solely about algorithms and models. Engineers must also consider factors such as data quality, scalability, interpretability, and ethics. The book "Building Intelligent Recommender Systems: Practical Insights for Engineers" aims to equip engineers with a comprehensive understanding of these factors, providing practical guidance and real-world examples to design and deploy robust recommender systems.

Customers Also Viewed

Buy Books Online at BookLoop

Discover your next great read at BookLoop, Australiand online bookstore offering a vast selection of titles across various genres and interests. Whether you're curious about what's trending or searching for graphic novels that captivate, thrilling crime and mystery fiction, or exhilarating action and adventure stories, our curated collections have something for every reader. Delve into imaginative fantasy worlds or explore the realms of science fiction that challenge the boundaries of reality. Fans of contemporary narratives will find compelling stories in our contemporary fiction section. Embark on epic journeys with our fantasy and science fiction titles,

Shop Trending Books and New Releases

Explore our new releases for the most recent additions in romance books, fantasy books, graphic novels, crime and mystery books, science fiction books as well as biographies, cookbooks, self help books, tarot cards, fortunetelling and much more. With titles covering current trends, booktok and bookstagram recommendations, and emerging authors, BookLoop remains your go-to local australian bookstore for buying books online across all book genres.

Shop Best Books By Collection

Stay updated with the literary world by browsing our trending books, featuring the latest bestsellers and critically acclaimed works. Explore titles from popular brands like Minecraft, Pokemon, Star Wars, Bluey, Lonely Planet, ABIA award winners, Peppa Pig, and our specialised collection of ADHD books. At BookLoop, we are committed to providing a diverse and enriching reading experience for all.