This volume collects the proceedings of the conference 'Topological methods in group theory', held at Ohio State University in 2014 in honor of Ross Geoghegan's 70th birthday. It consists of eleven peer-reviewed papers on some of the most recent developments at the interface of topology and geometric group theory. The authors have given particular attention to clear exposition, making this volume especially useful for graduate students and for mathematicians in other areas interested in gaining a taste of this rich and active field. A wide cross-section of topics in geometric group theory and topology are represented, including left-orderable groups, groups defined by automata, connectivity properties and Σ-invariants of groups, amenability and non-amenability problems, and boundaries of certain groups. Also included are topics that are more geometric or topological in nature, such as the geometry of simplices, decomposition complexity of certain groups, and problems in shape theory.
The work of Max Dehn (1878-1952) has been quietly influential in mathematics since the beginning of the 20th century. In 1900 he became the first to solve one of the famous Hilbert problems (the...
This book presents articles at the interface of two active areas of research: classical topology and the relatively new field of geometric group theory. It includes two long survey articles, one on...
In recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the...
Historically, applications of algebraic topology to the study of topological transformation groups were originated in the work of L. E. 1. Brouwer on periodic transformations and, a little later, in...