This book is a readable, digestible introduction to exponential families, encompassing statistical models based on the most useful distributions in statistical theory, including the normal, gamma, binomial, Poisson, and negative binomial. Strongly motivated by applications, it presents the essential theory and then demonstrates the theory's practical potential by connecting it with developments in areas like item response analysis, social network models, conditional independence and latent variable structures, and point process models. Extensions to incomplete data models and generalized linear models are also included. In addition, the author gives a concise account of the philosophy of Per Martin-Löf in order to connect statistical modelling with ideas in statistical physics, including Boltzmann's law. Written for graduate students and researchers with a background in basic statistical inference, the book includes a vast set of examples demonstrating models for applications and exercises embedded within the text as well as at the ends of chapters.
This book gives a comprehensive introduction to exponential family nonlinear models, which are the natural extension of generalized linear models and normal nonlinear regression models. The...
The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building large-scale multivariate statistical models...
First published by Wiley in 1978, this book is being re-issued with a new Preface by the author. The roots of the book lie in the writings of RA Fisher both as concerns results and the general stance...