This book describes the scattering of waves, both scalar and electromagnetic, from impenetrable and penetrable spheres. Although the scattering of plane waves from spheres is an old subject, there is little doubt that it is still maturing as a broad range of new applications demands an understanding of finer details. In this book attention is focused primarily on spherical radii much larger than incident wavelengths, along with the asymptotic techniques required for physical analysis of the scattering mechanisms involved. Applications to atmospheric phenomena such as the rainbow and glory are included, as well as a detailed analysis of optical resonances. Extensions of the theory to inhomogeneous and nonspherical particles, collections of spheres, and bubbles are also discussed. This book will be of primary interest to graduate students and researchers in physics (particularly in the fields of optics, the atmospheric sciences and astrophysics), electrical engineering, physical chemistry and some areas of biology.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and...
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and...
Since the fIrst edition of this book was published in the 1994, the theory of wave scattering from rough surfaces has continued to develop intensively. The community of researchers working in this...
Ten years ago, de Loor and co-workers at TNO, The Netherlands, were the first to report bottom topography patterns in real aperture radar (RAR) images of the southern North Sea. At that time, this...